Mesenchymal stem cells and 3D-osteocductive scaffold regenerate calvarial bone in critical size defects in swine

Zoe M. Johnson¹, Yuan Yuan¹, Xiangjia Li²,³, Tea Jashashvili⁴, Michael Jamieson⁵, Mark Urata⁶, Yong Chen³, and Yang Chai¹,*

1. Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
2. Department of Aerospace and Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
3. Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
4. Molecular Imaging Core, University of Southern California, Los Angeles, CA, USA.
5. Ottawa Hospital Research Institute, Ottawa, Canada.
6. Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.

Author Contributions
Zoe M. Johnson: Conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing
Yuan Yuan: Conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing
Xiangjia Li: Conception and design, collection and assembly of data, manuscript writing
Tea Jashashvili: Collection of data, data analysis and interpretation
Michael Jamieson: Conception and design, data interpretation
Mark Urata: Conception and design, data interpretation
Yong Chen: Conception and design, data analysis and interpretation, manuscript writing
Yang Chai: Conception and design, data analysis and interpretation, manuscript writing

*Corresponding author:
Yang Chai
University Professor
George and Mary Lou Boone Chair in Craniofacial Biology
Center for Craniofacial Molecular Biology
University of Southern California
2250 Alcazar Street – CSA 103
Los Angeles, CA 90033
Phone number: 323-442-3480
ychai@usc.edu
This work was supported by the National Institute of Dental and Craniofacial Research National Institute of Health - Center for Dental, Oral and Craniofacial Tissue and Organ Regeneration (C-DOCTOR) U24 DE026914; U24 DE029463 and Alfred Mann Institute (AMI) at the University of Southern California.

Keywords:
Critical size defect (CSD); Dental pulp neural crest cell (DPNCC); Bone marrow aspirate (BMA); Mesenchymal stem cells (MSCs); Hydroxyapatite tricalcium phosphate (HA/TCP)

ABSTRACT
Craniofacial bones protect vital organs, perform important physiological functions, and shape facial identity. Critical-size defects (CSDs) in calvarial bones, which will not heal spontaneously, are caused by trauma, congenital defects, or tumor resections. They pose a great challenge for patients and physicians, and significantly compromise quality of life. Currently, calvarial CSDs are treated either by allogenic or autologous grafts, metal or other synthetic plates that are associated with considerable complications. While previous studies have explored tissue regeneration for calvarial defects, most have been done in small animal models with limited translational value. Here we define a swine calvarial CSD model and show a novel approach to regenerate high-quality bone in these defects by combining mesenchymal stem cells (MSCs) with a 3D-printed osteoconductive HA/TCP scaffold. Specifically, we have compared the performance of dental pulp neural crest MSCs (DPNCCs) to bone marrow aspirate (BMA) combined with a 3D-printed HA/TCP scaffold to regenerate bone in a calvarial CSD (>7.0 cm2). Both DPNCCs and BMA loaded onto the 3D-printed osteoconductive scaffold support the regeneration of calvarial bone with density, compression strength, and trabecular structures similar to native bone. Our study demonstrates a novel application of an original scaffold design combined with DPNCCs or BMA to support regeneration of high-quality bone in a newly defined and clinically relevant swine calvarial CSD model. This discovery may have important impact on bone regeneration beyond the craniofacial region and will ultimately benefit patients who suffer from debilitating CSDs.
INTRODUCTION

Craniofacial bones protect vital organs, contribute to our facial identity, and serve as our interface with the world. They can also affect the way we sense our environment, eat, and communicate with others. Damage to these bones is detrimental not only to the function of these structures, including their crucial protection of the brain, but also to the psychosocial well-being of the patient, as it can quite literally change the face that is presented to the world. There are a multitude of causes of craniofacial bone defects and many approaches to repairing them (Badhey, et. al., 2017; Aydin et. al., 2011).

Due to an increase in the overall survival of neurotraumatic events such as open skull trauma, stroke, and subarachnoid hemorrhage necessitating decompressive craniectomy, the number of cranioplasties performed in the US now exceeds 5,000 each year (Ng & Nawaz, 2014). Incidents of head trauma, congenital defects, disease, and tumor resection often leave patients with large, full-thickness calvarial defects that are incapable of healing on their own (Lam et. al, 2015). These critical-size defects (CSDs) are typically filled by surgeons using metal or other synthetic implants, which are inconvenient for the patient, associated with significant morbidity and potential infection, and inferior architecturally to natural bone (Hill et. al., 2012). In pediatric patients, these implants fail to accommodate postnatal brain growth (Lam et. al, 2015). Furthermore, resorbable plates have tensile strength only for 3-4 weeks but often take longer than a year to resorb, decreasing opportunities for a more natural interface with existing bone to develop (Garland et. al., 2012). Only biological materials can participate in such a process of growth and feedback. Autologous bone grafting is another solution (Fearon et. al., 2017). However, for injuries of critical size, there may not be enough autologous bone elsewhere in the body suitable for grafting. Bone transplantation also often results in tissue rejection or, particularly in pediatric patients, in
Bone resorption (Grant et al., 2004). Bone grafting also causes additional trauma to the body which should be avoided if possible. Current solutions for craniofacial CSDs are thus unsatisfactory and there is a significant clinical need for improved treatment modalities.

Recently, mesenchymal stem cells (MSCs) have shown great promise in injury repair studies due to their ability to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes, neuron-like cells, and other cell types (Jiang et al., 2002). MSCs can proliferate as undifferentiated stem cells and later be guided to differentiate into the desired lineage depending on the culture environment. Stem cells delicately orchestrate tissue homeostasis and repair by proliferating to efficiently replace damaged tissue (Biteau et al., 2011). Stem cell-mediated tissue regeneration can also contribute to long-term tissue homeostasis and presents an ideal solution for calvarial bone regeneration. In order to mediate this process, the stem cells need to be placed in a niche environment that supports tissue regeneration. Biomaterials such as hydroxyapatite/tricalcium phosphate (HA/TCP) have been utilized as structural support for stem cell-mediated injury repair and can play an additional role in regeneration by supporting MSC function (Ramesh et al., 2018; Sulaiman et al., 2013; Mauney et al. 2005). Advances in 3D-printing technology have enabled customized design of these biocompatible materials such that they can be fit precisely to the dimensions of an injury, but few provide structural integrity that is suitable for clinical use (Kang et al. 2016).

In this study, we have defined a clinically relevant large animal model to study calvarial CSDs and have developed an innovative, biological approach that harnesses the ability of stem cells to regenerate craniofacial bone. In comparison to previous studies using mice and rats as animal models, we have created and tested a swine model that has a head size, skull thickness, and healing rate similar to those of humans. Our innovative 3D-printed osteoconductive HA/TCP
scaffold with structural integrity in combination with autologous neural crest or bone marrow MSCs promotes full healing of CSDs in the swine calvaria. Significantly, the regenerated bone forms a smooth calvarial surface with both fully functional and aesthetically satisfying results. Moreover, we show that the regenerated bone is of high quality that is comparable to their surrounding native bones. Importantly, we achieved these successful results with bone marrow aspirate (BMA), which can be easily obtained from a patient for autologous use and needs minimal manipulation, saving substantial time, resources, and avoiding possible complications from in vitro MSC expansion. This discovery represents an innovative, MSC-mediated tissue regeneration approach in a model that lays the groundwork for improving care for human patients with calvarial CSDs and has the potential to fill an unmet clinical need.
MATERIALS AND METHODS

Yorkshire farm pigs at 10-12 weeks of age were used to investigate stem-cell-mediated calvarial bone regeneration. All animal procedures were performed in accordance with federal regulations and with approval from the Institutional Animal Care and Use Committee (IACUC) at the University of Southern California.

Harvesting of swine dental pulp cells

Each pig (10-12 weeks of age) was anesthetized by veterinary staff and placed on its stomach. The inside of the mouth was wiped sequentially with a germicide and ethanol to prevent infection. The right mandibular incisor was extracted and the remaining gap was closed with discontinuous, absorbable vicryl monofilament sutures in size 3-0. Dental pulp neural crest mesenchymal stem cells (DPNCCs) were harvested from the incisor and expanded in cell culture as described below.

Culture of swine dental pulp cells

After extraction of the incisor, the outside of the tooth was thoroughly scrubbed with gauze soaked in bleach for two minutes to eliminate oral microbes. The tooth was cut open using sterile dissection scissors or a diamond burr. The dental pulp was removed using blunt, sterile forceps. The dental pulp was then finely chopped using sterile scissors and digested with a 0.2% solution of Collagenase Type I (Washington Biochemical Corporation, Table 1) diluted with Alpha-MEM (Gibco, Table 1) in a water bath at 37°C for 1.5 hours. The dental pulp-containing Collagenase solution was then strained for single cells using a 70 μm cell strainer into a 50mL conical tube. The remaining solution was centrifuged at 1440 rpm for 5 minutes at 21 °C and the supernatant
was discarded. The cell pellet was resuspended in culture media and plated at 1 x 10^6 cells per 15 cm tissue culture dish. Cells were incubated at 37°C and 5% CO₂.

Cells were cultured at low density to form single-cell colonies, and were passaged once reaching 65-70% subconfluence. To passage, media was removed from the culture dishes and the cells were washed with DPBS (Gibco, Table 1). After removal of DPBS, cells were detached from the plates using TrypLE Express with Phenol Red (Gibco, Table 1) for 7 minutes at 37°C and 5% CO₂. The cells and enzyme solution were immediately transferred to a conical tube with an equal volume of culture media to deactivate the enzyme. This solution was used for cell counting as described below, then centrifuged. The supernatant was discarded and the cell pellet was resuspended in culture media. With each passage, 1 x 10^6 cells were plated into 15 cm dishes. This process was repeated 2-3 times over 14 days before transplantation into the calvarial defect. Cells were counted using a BioRad TC20 Automated Cell Counter. Ten μL of suspended cells were loaded into the cartridge for cell counting. For transplantation, three 10 μL suspensions were counted and averaged. For each animal, 3-4 x 10^6 autologous cells were transplanted into the CSD site (see below) with HA/TCP particles or an HA/TCP 3D-printed scaffold.

Cells for the heat-inactivated DPNCC group were prepared and passaged using the same method as living DPNCCs. At the time of the last passage for transplantation, the cells were again detached from plastic plates using TriplE for 7 minutes at 37°C and 5% CO₂ and transferred to a conical tube. An equal volume of media was added to this solution before the cells were counted using a BioRad TC20 Automated Cell Counter as described above. Cells were centrifuged at 1440 rpm for 5 minutes, the supernatant was discarded, and the remaining cell pellet was resuspended in 1mL of culture media. The resuspension was transferred to a sterile centrifuge tube and heated to 85°C for 20 minutes. There were no live cells following the heat treatment.
With the remaining living cells not used for transplantation to support calvarial bone regeneration, the ability of the DPNCCs to differentiate into adipocytes, chondrocytes, and osteoblasts was verified through culture in adipogenic, chondrogenic, and osteogenic culture media, respectively (Gibco, Table 1). Adipogenic differentiation was evaluated using Oil Red O staining for lipid droplets. Chondrogenic differentiation was evaluated using Alcian blue staining for cartilage formation following condensation of cultured DPNCCs (Chung et. al, 2009). Osteogenic differentiation was evaluated using Alizarin red staining for bone formation.

Application of DPNCCs and HA/TCP nanoparticles or 3D-printed HA/TCP scaffold to swine calvarial CSD

Cells were washed with DPBS and dissociated from the culture dish as described for passaging above. For each calvarial CSD (3.0 cm in diameter), 3-4 x 10^6 autologous cells were transplanted into the defect site. For experimental groups using HA/TCP nanoparticles, the cells were resuspended in 3 mL culture media. Cells were placed on ice and transported to the operating room in a styrofoam container. During surgery, the 3 mL suspension was mixed with 5 g HA/TCP sterile nanoparticles (Sigma-Aldrich) in a sterile bowl until a paste-like consistency was reached. The DPNCC-HA/TCP paste was then transplanted into the CSD using a micro-spoon or chisel. The paste was manipulated to uniformly fill the defect and, at the surface, to follow the contours of the surrounding parietal bone.

For groups using an HA/TCP 3D-printed scaffold, cells were resuspended in 0.5-1 mL culture media. Cells were placed on ice and transported to the operating room in a styrofoam container. During surgery, the 3D-printed HA/TCP scaffold was first sized and placed into the defect (3.0 cm in diameter circular defect). Any excess scaffold was shaved off using a scalpel or
forceps. After placement of the scaffold, the cell suspension was evenly loaded onto the entire scaffold using a 1mL syringe without a needle.

Bone marrow aspirate collection in swine

In order to compare the ability of bone marrow aspirate (BMA) to DPNCCs in supporting calvarial bone regeneration, we harvested bone marrow from the swine tibia. After anesthesia by veterinary staff, the animal was placed in lateral recumbency. The tibia was shaved and cleaned three times sequentially with germicidal scrub and 70% ethanol. A bone punch was used on the medial aspect of the proximal tibia, where the bone is not covered by muscle (Swindle et. al, 2009) (Fig. 2G, H). This was confirmed by palpating the area. Once the needle penetrated the bone cortex, 4-8 mL bone marrow was collected using a syringe. For the 3 cm defect, 4 mL bone marrow was centrifuged at 2400 rpm for 9 minutes using the Harvest SmartPrep System. The serum supernatant was discarded and the remaining cells were loaded into the 3D-printed HA/TCP scaffold using a 6 mL syringe without a needle.

Culture and differentiation of swine bone marrow MSCs

Swine bone marrow was collected from tibial crest into tubes containing an anticoagulant. The bone marrow was divided into 10 ml aliquots, further diluted with PBS to 30 ml and mixed well. Then 10 ml Ficoll-Paque Plus was slowly added to the bottom of the tube, followed by centrifugation at 20 °C for 30 min at 400 × g with slow acceleration. The middle layer was collected into a new tube containing 25 ml PBS. This new tube was centrifuged at room temperature for 7 min at 350 × g and the supernatant was removed. The cell pellet was resuspended with MSC culture medium and the cells were plated in a 10 cm culture dish. The
medium was changed once every 3 days, and colonies of MSCs were visible after 7–10 days (Feyen, 2016).

Creating the CSD in swine

Each pig was anesthetized by the veterinary staff and placed on its stomach. The cranial surface was shaved and then cleaned sequentially with Betadine and 70% ethanol. A scalpel was used to make a 7-8 cm incision in the skin, about 1 cm left of the midline. A periosteal elevator was used to lift the periosteum from the calvarial bone. Once the underlying bone was exposed and surrounding skin and periosteum were retracted, the CSD of 3 cm in diameter was measured and marked on the bone. An oscillating saw was used to cut into the bone. When approaching the deep portion of the bone, a hammer and chisel were used to create the full-thickness defect so as not to damage the dura or brain below. Once the bone was removed, HA/TCP nanoparticles were mixed with cells and loaded into the defect site. For experimental groups using the 3D-printed HA/TCP scaffold, the HA/TCP scaffold was sized and loaded into the CSD first, then cells were injected into the holes of the scaffold using a syringe. Control CSDs were left empty after removal of the bone. The incision was then closed in layers, with the periosteum and loose connective tissue closed first and the superficial skin sutured second. Simple interrupted ties were made using 3-0 vicryl absorbable sutures (deep layer) and 0 nylon non-absorbable sutures (superficial layer). The defect was allowed to heal over 8 or 12 weeks or 6 months.

Dissection and collection of swine calvaria

Eight or twelve weeks or six months after implantation, each animal was first anesthetized then euthanized by overdose of pentobarbital. The animal was then decapitated. A scalpel was used to
make an incision in the skin along the midline of the calvaria, and a periosteal elevator was used to expose the underlying bone over the defect area. All soft tissue was separated from the surface of the bone using a scalpel and periosteal elevator. The sample was fixed in 10% formalin overnight, then placed in 1x PBS solution for CT imaging of the entire skull and calvarial surface. Once the whole skull was imaged, the calvaria surrounding the defect (about 6 x 6 cm) was dissected using a cordless reciprocating DeWalt saw with wood-cutting blades. The sample was again fixed in 10% formalin overnight, then placed in DPBS for further microCT imaging.

Development of the 3D-printed osteoconductive scaffold

HA/TCP scaffold design

The scaffold was designed based on the dimensions of a swine CSD extracted from CT scanning (Fig. 1E). Specifically, a 3D digital model of the injured swine calvarial bone was generated using Avizo software, and a digital model of the craniofacial defect was generated based on the contours of the CSD. This determined the overall shape and dimensions of the scaffold. Next, computer-aided design software was used to design micro-cell structures in the central portion of the scaffold (Li et. al., 2020). A set of digital design tools were developed and used for scaffold construction, enabling design of a scaffold with desired porosity and mechanical strength (Song et. al., 2017). Lattice structure scaffolds of pore size 4 mm were transplanted into the swine calvaria in combination with dental pulp- or bone marrow-derived MSCs. The compressive strength of each scaffold was simulated using Comsol MultiPhysics (Fig. 3C).

HA/TCP printing material preparation
Hydroxyapatite (HA) powder with a particle size of 10 μm was purchased from Sigma-Aldrich (CAS#: 1306-06-5). Tricalcium phosphate (TCP) with a particle size of 4 μm was also purchased from Sigma-Aldrich (CAS#: 12167-74-7). The photo-curable liquid polymer WaxCast (purchased from MakerJuice LABS) was used as a polymer binder. First, HA/TCP slurry (30 wt%) was prepared. HA (15 wt%) and TCP (15 wt%) were poured into the liquid photopolymer resin (WaxCast) sequentially, and the HA/TCP mixture was ball-milled with a rotational speed of 200 rpm for 40 mins. After that, the HA/TCP powders were homogenously distributed inside the photocurable resin and the HA/TCP slurry was degassed under a vacuum prior to the printing process.

3D printing and post-processing of HA/TCP scaffold

A mask image projection-based slurry printing (MIP-SP) process was developed to enable fabrication of HA/TCP microparticles, as described by Li et. al. (2019). The digital model of the 3D craniofacial scaffold was first imported into the software we developed, and a set of 2D mask images was obtained by slicing the digital model with 75 μm layer thickness. This layer thickness was determined by the cure depth of the HA/TCP slurry. During the printing process, the photocurable polymer mixed with HA/TCP particles selectively underwent photopolymerization, which was activated by the radiation of ultraviolet light with a specially designed pattern. The cured HA/TCP slurry was deposited layer by layer (100 μm thickness, to allow for shrinkage) to form the 3D shape. To remove the polymer and improve mechanical performance, the scaffold was debinded in a tube furnace (MTI Corp) at a temperature higher than 650 °C for 180 minutes. After this debinding process, the scaffold was allowed to cool to room temperature naturally. Next, to fuse the ceramic particles together, the scaffold underwent a sintering process. A tube furnace
(MTI Corp) was used to heat the scaffold to 1150 °C for another three hours. The finalized HA/TCP scaffold was then cooled to room temperature. Scaffolds were individually autoclaved before surgical use.

Cell viability analysis

DPNCCs and BMA were independently seeded at 2.5×10^4 per well in a 48-well plate and allowed to rest for 24 hours for attachment. Then, 3D-printed HA/TCP scaffolds were co-cultured with the cells to test their effect on cell proliferation. Cells were harvested at 24 and 72 hours and quantified using the BioRad Cell Counter as described above.

MicroCT imaging, density, and trabecular bone analysis of calvarial samples

MicroCT analysis was performed using a SCANCO μCT50 (Scanco V1.28) at the University of Southern California Molecular Imaging Center. The microCT images were acquired from swine 8 or 12 weeks or 6 months after calvarial injury with the x-ray source at 70 kVp and 250 μA. The data were collected at a resolution of 12.3 μm. Reconstruction in 3D was achieved using Avizo 7.1 (Visualization Sciences Group). The background noise from these segmentations and bones outside the scope of this study, such as the neck vertebrae, were manually removed using Avizo’s editor tools (Threshold, Contrast, Cropping).

Compression testing of regenerated bone and native bone

Compression testing was performed using INSTRON 5944 Universal Testing Systems up to 2 kN (450 lbf) force capacity. A 50 mm compression plate was used as the stationary stage. The compressive arm was made of a 1 cm diameter probe held by a 3-jaw chuck (INSTRON CAT#:}
To test compressive and mechanical strength, each sample was placed on the stage such that when the compressive arm lowered, a specific location on the bone was compressed. We tested 3 locations within the defect area (with or without bone regeneration) and 3 locations on the surrounding native bone for each sample. The compressive arm moved at a rate of 0.2 cm/s. For each location, the force applied by the arm and the displacement of the arm were measured. The end-of-test criteria were: (i) the force that needed to be applied exceeded the capacity of the system, (ii) a 40% drop in force was observed, or (iii) the moving arm met the stationary stage.

Decalcification and histological analysis of swine calvaria

After imaging, samples were decalcified using 20x sample volume of Leica Decalcifier I reagent. Samples were placed on a shaker and monitored every week for 3 months. The solution was changed every 2 weeks. Once pliable enough, the sample was cut down into smaller pieces to reduce the decalcification and dehydration time. Decalcification progress was examined using microCT analysis to verify presence or absence of calcified bone. Once fully decalcified, samples were dehydrated using increasingly concentrated solutions of ethanol (30%, 50%, 70%, 80%, 90%, 100%) then Xylene, a solution of 50:50 Xylene:paraffin, and paraffin. The samples remained in each solution for 12 hours then fixed in paraffin. SupaMega Stainless Steel Base Molds (Electron Microscopy Sciences, Supplier #:62354-60) were used to embed these samples. Paraffin-embedded samples were sectioned on a microtome with slices of 10-25µm thickness. Sections were plated on SupaMega slides and stained with hematoxylin and eosin (H&E) as previously described (Fischer et. al., 2006). Slides were imaged using a Keyence BZ-X710 fluorescence microscope in brightfield setting.
RESULTS

Creating a critical size defect model in the swine calvaria

In swine, the definition of a critical-sized defect (CSD) in the calvaria has not yet been fully established in the literature. More generally, a CSD is an injury that will not heal completely over the lifetime of the animal, or more conservatively, over the time course of the study in question, if no intervention is made (Park et al., 2016). It has been reported that a defect with 10 mm width and 10 mm thickness in swine craniofacial bone meets this criterion (Li et al., 2015). We decided accordingly to create a round, full-thickness defect with a diameter of 3 cm (area >7 cm²) in the Yorkshire farm pig calvaria (Fig. 1A-E). MicroCT imaging showed minimal bone regeneration at the edges of the defect and no bone tissue at the center of defect at either 8 or 12 weeks post-injury (Fig. 1F, G). Histological analysis confirmed that only soft tissue was found in the defect at 12 weeks post-surgery (Fig. 1J-L). Spanning each defect there was a layer of soft tissue approximately 0.5 mm thick (Fig. 1J), leaving minimal protection for the brain in this area. The 3 cm diameter defects in control swine without cells or HA/TCP failed to heal over the course of 8 weeks (Fig. 1F, H), and we confirmed that a defect of this size would also fail to heal within 12 weeks (Fig. 1G, I). Therefore, we have established a swine calvarial CSD model as a defect of 3 cm in diameter, which will not normally heal within 12 weeks following surgical removal of the calvarial bone.

Comparison of dental pulp neural crest MSCs and bone marrow aspirate

In the last decade, mesenchymal stem cells (MSCs) have been widely used for regenerative therapies due to their ability to maintain stemness and to differentiate into many cell types, including but not limited to osteocytes, chondrocytes, and adipocytes. Previous studies have shown that in combination with HA/TCP, cranial neural crest-derived MSCs regenerate mainly dense
cortical bone while bone marrow-derived MSCs regenerate trabecular bone with marrow space (Chung et al., 2009). We hypothesized that cranial neural crest-derived MSCs would regenerate the dense craniofacial bone necessary for our calvarial injury model but that bone marrow aspirate may also be adequate to support calvarial bone regeneration. Clinically, autologous dental-derived MSCs can be obtained from dental pulp, which is limited in supply, and must be expanded in vitro before transplantation. Bone marrow aspirate (BMA) is more commonly used for bone regeneration clinically, does not need to be expanded in culture, and is relatively more abundant while still being relatively simple to collect from the patient. In our study, we tested the regenerative potential of dental pulp neural crest MSCs (DPNCCs) from the dental pulp and compared it to that of BMA when each of these cell sources were used in combination with our 3D-printed HA/TCP scaffold in the swine calvarial CSD model. Our comparison is intended to inform future clinical practice of stem cells mediated bone regeneration in CSDs.

DPNCCs collected from the swine lower incisor (Fig. 2A-C) were cultured at low density in order to promote single cell colony formation. Within 24 – 48 hours of plating, cells attached to the bottom of the plastic dish. Cells maintained a rounded shape until fully attached to the plate. Once attached, cells began to elongate and spread (Fig. 2D), and their morphology remained consistent for the remainder of the culture period. Every 4-5 days, cells reached approximately 70% confluence and were passaged. After two weeks, DPNCCs were transplanted into the calvarial defect to support bone regeneration.

In a comparison group, bone marrow was aspirated from the swine tibia while the animal was anesthetized for the creation of the calvarial CSD (Fig. 2G, H). The aspirate was centrifuged and remaining cells were transplanted into the calvarial defect.
To test the stem cell properties of the DPNCCs and BMA, both were separately cultured and differentiated toward different cell fates. DPNCCs and cells derived from BMA were successfully differentiated into chondrocytes, as confirmed with Alcian blue staining (Fig. 2E, J), and also successfully differentiated into osteocytes, as confirmed with Alizarin red staining (Fig. 2F, K). In addition, BMA-derived cells were able to differentiate into adipocytes (Fig. 2I). Collectively, these experiments demonstrate the stemness of these DPNCCs and BMA cells.

DPNCCs with HA/TCP nanoparticles regenerate bone in full-thickness calvarial CSDs

To test the regenerative potential of DPNCCs with HA/TCP, we treated 3 cm diameter calvarial CSDs in swine with 4×10^6 DPNCCs + 5 g HA/TCP nanoparticles and compared them to controls (unfilled CSDs) after 8 weeks. We observed a significant difference in bone regeneration between control swine (n=3) and those which received HA/TCP and DPNCCs (n=3). Calvarial bone CSDs treated with HA/TCP particles and DPNCCs showed complete calvarial bone regeneration and normal bone density when compared to the native calvarial bone (n=3, with 100% success rate) (SFig. 1A, B). In the control group, however, there was no bone formation within the CSD (Fig. 1F, H) in the swine after eight weeks.

To test the functional significance of DPNCCs in supporting calvarial bone regeneration in swine, we tested the ability of fibroblasts or heat-inactivated DPNCCs combined with HA/TCP particles to support calvarial bone regeneration. Autologous gingival fibroblasts ($3-4 \times 10^6$) combined with HA/TCP particles were placed in the calvarial defect site (n=3) following the same procedure. Eight weeks later, we did not observe any calvarial bone regeneration within the CSD with CT analysis (SFig. 1F, G). As with the defects with neither cells nor HA/TCP, we observed a layer of soft tissue filling the CSD site but there was no bone formation. Similarly, heat-
inactivated DPNCCs transplanted with HA/TCP nanoparticles failed to support bone regeneration to heal the CSDs, as there was no new calvarial bone regeneration observed via microCT 8 weeks after surgery (n=3) (SFig. 1K, L).

Taken together, this series of experiments demonstrated that living MSCs combined with HA/TCP can successfully support calvarial bone regeneration, whereas fibroblasts or heat-inactivated MSCs delivered with HA/TCP cannot, nor can HA/TCP alone. Despite the successful regeneration of calvarial bone in a CSD using DPNCCs and HA/TCP, the possibility remained that the regenerated calvarial bone could be aesthetically improved with a smoother surface (SFig. 1A). We hypothesized that our osteoconductive 3D-printed scaffold would assist in the uniform distribution of stem cells in the defect, supporting the proper formation of calvarial bone structure and producing a natural bony surface.

Optimization of the 3D-printed osteoconductive scaffold

To improve the surface anatomy of regenerated calvarial bone, we designed and fabricated a 3D-printed biodegradable scaffold based on a CT scan of a calvarial CSD in an adult farm pig. The scaffold was designed with a lattice structure to support transplanted MSCs (Fig. 3A-D). This lattice design allowed for easy cell loading, while providing adequate protection of the brain tissue under the CSD. The details of the 3D-printing process developed to fabricate the HA/TCP scaffold have been described previously (Li et. al., 2019; Song et. al., 2017). The top surface of the designed scaffold was a circle of 3.8 cm diameter and it tapered down to a bottom surface with 3.5 cm diameter (Fig. 3B). The bottom was concave and closely matched the curvature of the inner skull surface. In addition, the 3D-printed scaffold was designed to be filled with cells via 4 mm holes. The final scaffold had a disc-like shape of the desired dimensions so that it fit precisely into the
swine calvarial CSD (Fig. 3E). The compressive strength of the scaffold, as simulated using Comsol MultiPhysics Mechanical software, enabled it to maintain its shape during handling and after surgery (Fig. 3C).

To test how DPNCCs or BMA combined with 3D-printed HA/TCP scaffold may support calvarial bone regeneration in a CSD, we created a calvarial CSD 3 cm in diameter as described above. The 3D-printed HA/TCP scaffold was gently placed into the defect and loaded with DPNCCs or BMA via a syringe. The surgical site was then sutured closed. A cell viability study showed that each cell type was compatible with the scaffold in vitro and thus suggested it would be safe for use in vivo (Fig. 3F, G).

MSCs combined with 3D-printed osteoconductive scaffold improve the quality of regenerated calvarial bone

To test the potential of MSCs delivered with 3D-printed HA/TCP scaffold for stem cell-mediated bone regeneration in the swine calvaria, we generated a CSD (3 cm in diameter) in the swine calvaria as outlined above. Following transplantation of the 3D-printed HA/TCP scaffold with DPNCCs (3-4 x 10^6 autologous DPNCCs) into the calvarial CSD, we monitored the bone regeneration at 8 (n=6) and 12 (n=3) weeks. At 8 weeks, the injury had healed throughout the entire CSD (Fig. 4E, F). The bone was thickest at the edges of the defect, suggesting that it began to regenerate from the edges and progressed inward. The regenerated bone appeared continuous with the native bone based on surface appearance and CT analyses (Fig. 4E, F). Histological staining showed stripes of cortical bone between areas of trabeculation, with more trabecular structures at the edge of the defect and thick, dense stripes of new bone at the center of the defect (Fig. 4G, H). Newly regenerated bone surrounded the scaffold material and formed a bone network
around the remaining HA/TCP material (Fig. 4G). At 8 weeks post-surgery, density analysis showed that the regenerated bone was significantly less dense than the surrounding native bone (p=0.0137, Fig. 6A). To assess the quality of the newly regenerated calvarial bone, we conducted compression tests. The maximum force that was able to be applied to bone regenerated using DPNCCs and HA/TCP matched that of the surrounding native bone. Furthermore, the displacement of the compressive arm at maximum force was the same between native and regenerated bone. In the control group, the CSD area showed no resistance to the compression force, indicating that DPNCCs and our HA/TCP scaffold successfully supported calvarial bone regeneration in comparison to the control group eight weeks post-surgery (SFig. 2A). No defects in the dura or brain were observed under the CSD area when treated with DPNCCs and scaffold, suggesting that the scaffold protected the vital structures (n=9). No adverse effects to the animals were observed from the surgical procedure or treatment with the DPNCCs and scaffold (n=9). There was no ectopic bone nor abnormal tumor-like tissue formation in any of the calvarial CSDs treated with DPNCCs and 3D-printed HA/TCP scaffold after 8 or 12 weeks.

At 12 weeks post-injury (n=3), the surface of the newly regenerated bone appeared to be smoother than at 8 weeks post-injury (Fig. 4I). The regenerated bone formed a continuous connection with the native bone and showed uniform bone formation throughout the CSD (Fig. 4I, J). The HA/TCP scaffold underwent further degradation, but some HA/TCP remained. The regenerated bone formed a complex network resembling the endogenous bone structure (Fig. 4K, L). Histological H&E staining showed new, dense, cortical bone surrounding the remaining HA/TCP scaffold (Fig. 4K). The mean trabecular number of the regenerated bone was not significantly different from that of the native bone at 12 weeks post-surgery (Fig. 6D). The trabecular spacing and thickness of the newly formed bone indicated that the regenerated bone in
the CSD had begun remodeling as the ones in the native calvarial bone. The density of the regenerated bone at 12 weeks post-surgery was comparable to the native bone, as indicated by CT analysis (Fig. 6B). Compression testing of the regenerated bone from DPNCC + 3D-printed HA/TCP scaffold samples showed comparable strength to the native bone (SFig. 2B). During compression testing, cracking of the samples never occurred at the junction between the newly formed and native bone.

Bone marrow aspirate and 3D-printed scaffold in calvarial bone regeneration to repair CSDs

To test the potential of BMA to regenerate calvarial bone in swine, we collected 4 mL of bone marrow from the swine tibial crest. After centrifuging, the remaining BMA containing MSCs was transplanted into a 3D-printed scaffold and subsequently placed into a 3 cm diameter defect in the calvarial bone CSD (n=8).

As with DPNCCs, the BMA was able to regenerate bone in this CSD in the presence of the 3D-printed HA/TCP scaffold. At 8 weeks, the bone defect was healed throughout, and similar to the DPNCC-treated group (n=4). CT imaging analyses suggested that the new bone growth began at the edges of the defect and progressed toward the center (Fig. 5A, B). During the study, no animals experienced any complications or infections related to the calvarial surgery, bone marrow retrieval site, or treatment with BMA and HA/TCP scaffold. Upon dissection, the defect site was smooth to the touch. Upon visual inspection, the newly formed bone resembled the surrounding calvarial bone in color and texture. Density of the regenerated bone was not significantly different from that of the native bone (Fig. 6A). MicroCT analysis showed that a trabecular network formed around the remaining scaffold and integrated with the surrounding native bone (Fig. 5B). Trabecular structure analysis showed that the regenerated bone had similar trabecular thickness
with increased trabecular number and decreased trabecular spacing as compared to the native calvarial bone at 8 weeks post-surgery (Fig. 6C). Histological analysis of these samples confirmed the complex trabecular network shown in the microCT images (Fig. 5C, D). The regenerated bone was dense and cortical, as indicated in our H&E staining at 8 weeks post-surgery (Fig. 5C, D). Some HA/TCP material persisted within the regenerated calvarial bone. During compression testing, the regenerated bone performed similarly to the native bone (SFig. 2A). None of the samples broke at the junction between native and regenerated calvarial bone.

During dissection of the calvaria samples of 12 weeks post-surgery, we observed less remaining HA/TCP scaffold material as compared to the samples at 8 weeks post-surgery (n=4) (Fig. 5F). The boundary of the original defect was undetectable both upon visual inspection and in microCT images (Fig. 5E, F). The bone density and compressive strength of the newly regenerated calvarial bone were comparable to those of the native bone (Fig. 6B). Furthermore, these samples never broke at the junction of new and regenerated bone during compressive testing.

At the center of the original CSD, the regenerated bone appeared to be thinner than at the periphery of the defect, suggesting that new calvarial bone formation initiated from the edge of the CSD (Fig. 5E, F). Our histological analysis indicated that there was dense calvarial bone regeneration throughout the CSD (Fig. 5G, H). The remaining HA/TCP scaffold was surrounded by newly formed cortical bone (Fig. 5G).

Eight and twelve weeks post-surgery, CT imaging revealed that remnants of the scaffold persisted in the healed defect in both DPNCC and BMA groups (Fig. 4F, J; Fig. 5B, F). Interestingly, in the scaffold-only groups, nearly the entire scaffold remained, leaving the surface uneven (Fig. 4A, B). This indicates that the transplanted cells play an important role in scaffold biodegradation and may integrate the components of HA/TCP to regenerate bone in the CSD.
defect in the calvaria. Histological analysis of the scaffold-only groups showed growth of large strips of soft tissue accompanied by small strips of bone, suggesting the necessity of adding cells to facilitate proper bone regeneration (Fig. 4C, D).
DISCUSSION

This study represents a novel approach to addressing a long-standing clinical need, namely a biological solution to repair critical-sized bone defects in the calvaria. Current therapies for large calvarial bone defects include metal and plastic implants, as well as autologous bone grafts when sufficient bone is available. There are many limitations to these therapies, particularly in the case of non-resorbable plates, which provide a purely mechanical solution to protect the brain and improve aesthetics. Metal and plastic implants are prone to infection, are uncomfortable for the patient, and do not accommodate for brain and skull growth in pediatric patients. Since these implants are not biological, they cannot integrate fully with the native bone, nor can they contribute to tissue homeostasis. Autologous bone grafts cause further harm to the patient at the harvest site and often do not yield enough bone to heal a defect of critical size. Our strategy for regenerating calvarial bone provides several distinct advantages over current clinical practice, owing to the ability of the newly regenerated bone to integrate with existing bone and participate in maintaining tissue homeostasis. Importantly for pediatric indications, calvarial bone regenerated using our approach will be able to grow with the skull and accommodate crucial future brain growth.

Skull injury repair has primarily been investigated in small animal models such as rats (Mardas et. al., 2002; Spicer et. al., 2012; Bae et al., 2018) and rabbits (Maliha et. al., 2019; Young et. al., 2008; Kim et al., 2018). These studies have made important contributions to the development of strategies for calvarial bone regeneration. However, rodent calvaria are very different from that of humans, and a large animal CSD model is ultimately necessary for enabling clinical translation. Some recent studies have tested how cell-based approaches can support calvarial bone regeneration in full-sized and miniature swine (Wehrhan et al., 2011; Cao et al., 2015; Li et al.,
2015; Rubessa et al., 2017). However, none of these studies have tested how autologous stem cells combined with a 3D-printed osteoconductive scaffold can support calvarial bone regeneration in such a large CSD (>7.0 cm²) in swine. In developing and testing novel treatment modalities for calvarial defects, the size of the defect matters greatly; large defects are the most challenging cases for achieving successful bone regeneration. Building on our previous study (Park et. al., 2016), we therefore sought to establish a calvarial CSD model in swine, and to further investigate how MSCs combined with osteoconductive biomaterials can support calvarial bone regeneration in this model.

We selected swine (Yorkshire farm pigs) as a large animal model because their bone morphology and anatomy are similar to those of humans, as are their healing and bone remodeling processes (Thorwarth et al., 2005; Rubessa et al., 2017). Furthermore, the head of a full-sized farm pig is larger than that of a human, making it possible to create a large CSD similar to those seen in patients in order to mimic clinical conditions faithfully (Weickenmeier et al., 2018). The establishment of this calvarial bone CSD model in swine will serve as an important platform for future studies to test different biomaterials in combination with stem or progenitor cells in calvarial bone regeneration.

To develop a regenerative therapy for calvarial CSDs that will produce superior outcomes relative to the current standards of care, we used dental pulp-derived mesenchymal stem cells (MSCs) and compared it to bone marrow aspirate (BMA), which also contains MSCs, when used in combination with our 3D-printed HA/TCP scaffold. MSCs are ideally suited for tissue regeneration, as they are unique in their ability to self-renew while maintaining their stemness. These cells are multipotent with the capacity to differentiate into chondrocytes, adipocytes, osteocytes, and a variety of other cell types under the right conditions (Langer and Vacanti, 1993;
Mao et al., 2006). Our previous study has shown that cranial neural crest-derived MSCs as well as long bone marrow MSCs combined with HA/TCP particles can support bone regeneration (Chang 2009). Here we tested the ability of MSCs derived from the cranial neural crest and long bone marrow aspirate to regenerate bone to repair a CSD in a large animal model. Although dental pulp MSCs delivered with HA/TCP particles support calvarial bone regeneration in a CSD, the surface of the regenerated bone is less than ideal, which motivated us to develop a 3D-printed osteoconductive scaffold to achieve a better outcome in calvarial bone regeneration.

The osteoconductive, 3D-printed scaffold we developed for calvarial bone regeneration in a CSD provides a suitable environment that protects the brain during calvarial bone regeneration, promotes osteogenesis and maintains cell viability while holding the cells in place. Although HA/TCP has been used to support bone regeneration, the engineering of our 3D-printed HA/TCP scaffold is an innovative development (Rubessa et al., 2017). Our HA/TCP scaffold is custom-designed based on the CSD. The lattice design and pore size make it easy to load cells during the surgical procedure. The HA/TCP scaffold is biocompatible, osteoconductive, undergoes degradation following bone regeneration, and has the ability to confine cells in place to achieve an aesthetic surface profile of the newly regenerated calvarial bone. It also facilitates seamless integration of the newly regenerated and existing calvarial bone, resulting in biological repair of a calvarial CSD. We have demonstrated that our therapy yields quality cortical bone of sound structure that is well integrated with the native bone, and moreover, that the new tissue is capable of cellular turnover and remodeling.
MSCs are crucial in supporting calvarial bone regeneration (Stockmann et al., 2012; Cao et al., 2015). In this study, we have shown that HA/TCP alone, heat-inactivated MSCs, and fibroblasts are insufficient to support bone regeneration in the swine calvarial CSD model; live MSCs appear to be required for complete bone regeneration over the time period of our study. Crucially, when delivered on our 3D-printed osteoconductive scaffold, both DPNCCs and BMA were able to regenerate quality bone in the swine calvaria. The bone regenerated using BMA + HA/TCP scaffold appears to have more trabecular structure than bone regenerated using DPNCCs, consistent with our previous findings (Chung et. al., 2009). Craniofacial bones differ from long bones in that they develop through a process of intramembranous ossification instead of endochondral, and they contain significantly less marrow space than long bones. Owing to the latter quality, the bones of the face and skull are densely cortical, in contrast to the spongy, trabecular quality of long bones. Due to its crucial function of protecting the brain and sensory organs, the strength and quality of regenerated craniofacial bone must be considered carefully. Importantly, our density analysis indicates that the trabecular bone regenerated using BMA when combined with our HA/TCP scaffold is comparable to the native bone in its mechanical properties, suggesting that it would be both dense and strong enough to protect the brain. The capacity of both neural crest- and BMA-derived cells to regenerate cortical bone when combined with our HA/TCP scaffold in the calvaria may indicate environment-dependent differentiation of MSCs. For future clinical practice, either DPNCCs or BMA could be suitable for use with our scaffold to regenerate calvarial bone.

One of the most clinically important aspects of the present work lies in our finding that BMA can support calvarial CSD repair when combined with our 3D-printed scaffold. Using minimally
manipulated BMA directly after harvest to support calvarial bone regeneration has several distinct advantages. First, it obviates the need for expansion of the cells, which is costly and time-consuming. Second, it reduces the potential for contamination or loss of stemness of the MSCs due to their expansion in cell culture. Currently, the advantage may lie with BMA over neural crest-derived stem cells for these reasons. However, previous results and the current study indicate that if a source of “off-the-shelf” allogeneic cranial neural crest-derived MSCs were to become available, they could represent an excellent option.

In summary, we have established a large animal calvarial CSD model with high pre-clinical value. Using this model we have successfully tested a novel approach for skull bone regeneration that combines a 3D-printed osteoconductive scaffold with dental pulp MSCs or BMA. In comparison to the current treatment for patients with CSDs in the skull, our approach will offer patients a safe and effective biological solution to restore skull form and function, and to improve the quality of life for patients.
ACKNOWLEDGEMENTS

We thank Bridget Samuels for critical reading of the manuscript. This work was supported by the National Institute of Dental and Craniofacial Research National Institute of Health - Center for Dental, Oral and Craniofacial Tissue and Organ Regeneration (C-DOCTOR) U24 DE026914; U24 DE029463 and Alfred Mann Institute (AMI) at the University of Southern California.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
REFERENCES

24 Liu Y et al. “Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α.” Nature medicine vol. 17,12 1594-601. 20 Nov. 2011, doi:10.1038/nm.2542

29 Mardas N, Kostopoulos L, Karring T. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an

https://doi.org/10.1038/nbt0695-565
FIGURE LEGENDS

Figure 1: Generating a critical-sized defect in the swine calvaria.
Schematic drawing of defect placement (A) on the swine calvarial surface. Schematic drawing in coronal view of (B) normal calvarial bone, periosteum, skin, and dura; (C) retraction of the skin and periosteum to expose bone to create 3 cm defect; (D) skin and periosteum closure over bone. (E) Gross anatomy image of empty defect at time of surgery showing exposed dura. MicroCT showing defect at (F, H) 8 weeks post-surgery and (G, I) 12 weeks post-surgery. (F, G) Inserts show transverse microCT through defect. Red dashed lines (H, I) indicate boundary of defect site. (J-L) Histological sections of defect at 12 weeks post-surgery. Boxed areas in J are shown enlarged in K and L. Scale bars: F-G, 10 mm; H-I, 5mm; J, 1 mm; K-L, 200 μm.

Figure 2: Harvesting and characterization of dental pulp-derived neural crest cells. (A) Schematic drawing of swine mandible. Red arrow indicates location of extracted swine incisor. (B) Swine incisor post-extraction and (C) dental pulp removed from incisor. (D) Single-cell colony of undifferentiated DPNCCs, 48 hrs after extraction and plating. (E) Alcian blue staining of DPNCCs, 3 weeks post-plating. (F) Alizarin red staining of DPNCCs, one week post-plating. (G) Photo of swine tibia at time of bone marrow aspiration, indicating the tibial crest landmark and site of aspiration. (H) Schematic drawing of tibial bone with aspiration site. (I) Oil Red O staining of BMA, one week post-plating. (J) Alcian blue staining of BMA culture, 3 weeks post-plating. (K) Alizarin red staining of BMA culture, one week post-plating. Scale bars: B-C, 10 mm; D-F, I, 200 μm; J-K, 5 mm.
Figure 3: Design and fabrication of HA/TCP scaffold using 3D printing and light-curing. (A) Digital model of the custom designed scaffold showing dimensions; (B) digital model of the lattice design 3D-printed HA/TCP scaffold and measurements from the side view; (C) simulation of HA/TCP scaffold under compression using Comsol MultiPhysics; (D) image of final scaffold product; (E) Gross anatomy photo of scaffold loaded with cells in the 3 cm defect at time of surgery. Cell compatibility studies for (F) DPNCC and (G) BMA culture with HA/TCP scaffold. Scale bars, 5 mm.

Figure 4: Dental pulp-derived MSCs and 3D-printed scaffold regenerate dense, strong bone in the swine calvarial CSD.
MicroCT of CSD filled with (A, B) HA/TCP scaffold alone; (E, F) HA/TCP scaffold with DPNCCs imaged 8 weeks post-surgery; (I, J) HA/TCP scaffold with DPNCCs 12 weeks post-surgery. (C-E, H-J, M-O) Histological staining of defect filled with HA/TCP scaffold (C, D) alone or in combination with DPNCCs at (G, H) 8 weeks post-surgery and (K, L) 12 weeks post-surgery. Black and red dashed lines indicate original site of injury. Scale bars: A-B, F-G, K-L, 10 mm; C-E, H-J, M-O, 1 mm.

Figure 5: Bone marrow aspirate and 3D-printed scaffold regenerate dense, strong bone in a swine calvarial CSD.
MicroCT of critical size defect filled with HA/TCP scaffold of 4mm pores with bone marrow aspirate (A, B) imaged 8 weeks post-surgery and (E, F) 12 weeks post-surgery. (C, D, G, H)
H&E staining of defect filled with BMA + HA/TCP scaffold (C, D) 8 weeks and (G, H) 12 weeks post-surgery. Black and red dashed lines indicate original site of injury. Scale bars: A-B, E-F, 5 mm; C, G, 1 mm; D, H 0.5mm.

Figure 6: Density and trabecular analysis of calvarial bone regenerated by DPNCCs and BMA in combination with a 3D-printed HA/TCP scaffold.

Density analysis comparing native bone to DPNCC- and BMA-mediated regenerated bone at (A) 8 weeks and (B) 12 weeks post-surgery. Comparison of trabecular number in native bone to DPNCC- and BMA-mediated regenerated bone at (C) 8 weeks and (D) 12 weeks post-surgery. Scale bars, 5 mm.

Supplementary Figure 1: CNC-derived MSCs combined with HA/TCP particles promote bone regeneration in a calvarial CSD.

(A-F) MicroCT of CSDs filled with HA/TCP particles and dental pulp neural crest cells at 8 weeks post-surgery. (A inset) Defect filled with HA/TCP particles and DPNCCs at time of surgery. (B, E) MicroCT of CSD filled with HA/TCP particles and fibroblasts at 8 weeks post-surgery. (C, F) MicroCT of CSD filled with HA/TCP particles and heat-inactivated DPNCCs at 8 weeks post-surgery. (B and C insets) Transverse microCT through defects shown in B and C. Black dashed lines in A-C and red dashed lines in D-F indicate boundaries of original defects. Scale bars: A-C, 10 mm; D-F 5 mm.

Supplementary Figure 2: Compressive force analysis of regenerated bone after treatment with DPNCCs or BMA in combination with a 3D-printed scaffold.
Comparison of compressive load strain between native bone and DPNCC- and BMA-mediated regenerated bone (A) 8 weeks post-surgery and (B) 12 weeks post-surgery.
Figure 1: Generating a critical-sized defect in the swine calvaria.
Figure 2: Harvesting and characterization of dental pulp-derived neural crest cells.
Figure 3: Design and fabrication of HA/TCP scaffold using 3D printing and light-curing.
Figure 4: Dental pulp-derived MSCs and 3D-printed scaffold regenerate dense, strong bone in the swine calvarial CSD.
Figure 5: Bone marrow aspirate and 3D-printed scaffold regenerate dense, strong bone in a swine calvarial CSD.
Figure 6: Density and trabecular analysis of calvarial bone regenerated by DPNCCs and BMA in combination with a 3D-printed HA/TCP scaffold.
8 weeks post surgery

<table>
<thead>
<tr>
<th></th>
<th>DPNCCs + HA/TCP particles</th>
<th>Fibroblasts + HA/TCP particles</th>
<th>Heat-inactivated DPNCCs + HA/TCP particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Figure 2: Compressive force analysis of regenerated bone after treatment with DPNCCs or BMA in combination with a 3D-printed scaffold.
<table>
<thead>
<tr>
<th>Reagent Name</th>
<th>Company</th>
<th>CAT/REF#</th>
<th>LOT#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagenase Type I</td>
<td>Washington Biochemical Corporation</td>
<td>CAT#: LS004194</td>
<td>LOT#: 45D15720</td>
</tr>
<tr>
<td>DPBS, no calcium, no magnesium</td>
<td>Gibco</td>
<td>CAT#: 14190250</td>
<td></td>
</tr>
<tr>
<td>Alpha-MEM</td>
<td>Gibco</td>
<td>REF#: 12571-063</td>
<td>LOT#: 2044318</td>
</tr>
<tr>
<td>TrypLE Express with Phenol Red</td>
<td>Gibco</td>
<td>REF#: 12605-010</td>
<td>LOT#: 1897328</td>
</tr>
<tr>
<td>Adipogenic Differentiation Media</td>
<td>Gibco</td>
<td>REF#: A10410-01</td>
<td>LOT#: 1925522</td>
</tr>
<tr>
<td>Chondrogenic differentiation Media</td>
<td>Gibco</td>
<td>REF#: A10069-01</td>
<td>LOT#: 1929138</td>
</tr>
<tr>
<td>Osteogenic Differentiation Media</td>
<td>Gibco</td>
<td>REF#: A10069-01</td>
<td>LOT#: 1929138</td>
</tr>
</tbody>
</table>